Learning Symbolic Formulations in Design Optimization
نویسندگان
چکیده
This paper presents a learning and inference mechanism for unsupervised learning of semantic concepts from purely syntactical examples of design optimization formulation data. Symbolic design formulation is a tough problem from computational and cognitive perspectives, requiring domain and mathematical expertise. By conceptualizing the learning problem as a statistical pattern extraction problem, the algorithm uses previous design experiences to learn design concepts. It then extracts this learnt knowledge for use with new problems. The algorithm is knowledge-lean, needing only the mathematical syntax of the problem as input, and generalizes quickly over a very small training data set. We demonstrate and evaluate the method on a class of hydraulic cylinder design problems.
منابع مشابه
Dualize it: software for automatic primal and dual conversions of conic programs
Many optimization problems gain from being interpreted and solved in either primal or dual form. For a user with a particular application, one of these forms is usually much more natural to use, but this is not always the most efficient one. This paper presents an implementation in the optimization modelling tool YALMIP that allows the user to define conic optimization problems in a preferred f...
متن کاملOPTIMAL DESIGN OF TRUSS BRIDGES USING TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM
In this study, teaching-learning-based optimization (TLBO) algorithm is employed for the first time for optimization of real world truss bridges. The objective function considered is the weight of the structure subjected to design constraints including internal stress within bar elements and serviceability (deflection). Two examples demonstrate the effectiveness of TLBO algorithm in optimizatio...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSSES USING TEACHING-LEARNING-BASED OPTIMIZATION
A novel optimization algorithm named teaching-learning-based optimization (TLBO) algorithm and its implementation procedure were presented in this paper. TLBO is a meta-heuristic method, which simulates the phenomenon in classes. TLBO has two phases: teacher phase and learner phase. Students learn from teachers in teacher phases and obtain knowledge by mutual learning in learner phase. The suit...
متن کاملThe Reformulation-Optimization Software Engine
Most optimization software performs numerical computation, in the sense that the main interest is to find numerical values to assign to the decision variables, e.g. a solution to an optimization problem. In mathematical programming, however, a considerable amount of symbolic transformation is essential to solving difficult optimization problems, e.g. relaxation or decomposition techniques. This...
متن کاملMulti-Objective Learning Automata for Design and Optimization a Two-Stage CMOS Operational Amplifier
In this paper, we propose an efficient approach to design optimization of analog circuits that is based on the reinforcement learning method. In this work, Multi-Objective Learning Automata (MOLA) is used to design a two-stage CMOS operational amplifier (op-amp) in 0.25μm technology. The aim is optimizing power consumption and area so as to achieve minimum Total Optimality Index (TOI), as a new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008